19. 删除链表的倒数第 N 个结点

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。

示例 1:

img

1
2
输入:head = [1,2,3,4,5], n = 2
输出:[1,2,3,5]

示例 2:

1
2
输入:head = [1], n = 1
输出:[]

示例 3:

1
2
输入:head = [1,2], n = 1
输出:[1]

提示:

  • 链表中结点的数目为 sz
  • 1 <= sz <= 30
  • 0 <= Node.val <= 100
  • 1 <= n <= sz

**进阶:**你能尝试使用一趟扫描实现吗?

暴力做法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
List<ListNode> list = new ArrayList<>();
while(head != null){
list.add(head);
head = head.next;
}
int len = list.size();
int x = len - n;
list.remove(x);

if (list.isEmpty()) {
return null;
}
// 重新连接节点
for (int i = 0; i < list.size() - 1; i++) {
list.get(i).next = list.get(i + 1);
}
list.get(list.size() - 1).next = null; // 确保最后一个节点的next为null
return list.get(0);

}
}

📖 文字题解

前言

在对链表进行操作时,一种常用的技巧是添加一个哑节点(dummy node),它的 next 指针指向链表的头节点。这样一来,我们就不需要对头节点进行特殊的判断了。

例如,在本题中,如果我们要删除节点 y,我们需要知道节点 y 的前驱节点 x,并将 x 的指针指向 y 的后继节点。但由于头节点不存在前驱节点,因此我们需要在删除头节点时进行特殊判断。但如果我们添加了哑节点,那么头节点的前驱节点就是哑节点本身,此时我们就只需要考虑通用的情况即可。

特别地,在某些语言中,由于需要自行对内存进行管理。因此在实际的面试中,对于「是否需要释放被删除节点对应的空间」这一问题,我们需要和面试官进行积极的沟通以达成一致。下面的代码中默认不释放空间。

方法一:计算链表长度

思路与算法

一种容易想到的方法是,我们首先从头节点开始对链表进行一次遍历,得到链表的长度 L。随后我们再从头节点开始对链表进行一次遍历,当遍历到第 L−n+1 个节点时,它就是我们需要删除的节点。

为了与题目中的 n 保持一致,节点的编号从 1 开始,头节点为编号 1 的节点。

为了方便删除操作,我们可以从哑节点开始遍历 L−n+1 个节点。当遍历到第 L−n+1 个节点时,它的下一个节点就是我们需要删除的节点,这样我们只需要修改一次指针,就能完成删除操作。

p1

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
ListNode dummy = new ListNode(0, head);
int length = getLength(head);
ListNode cur = dummy;
for (int i = 1; i < length - n + 1; ++i) {
cur = cur.next;
}
cur.next = cur.next.next;
ListNode ans = dummy.next;
return ans;
}

public int getLength(ListNode head) {
int length = 0;
while (head != null) {
++length;
head = head.next;
}
return length;
}
}

复杂度分析

  • 时间复杂度:O(L),其中 L 是链表的长度。

  • 空间复杂度:O(1)。

方法二:栈

思路与算法

我们也可以在遍历链表的同时将所有节点依次入栈。根据栈「先进后出」的原则,我们弹出栈的第 n 个节点就是需要删除的节点,并且目前栈顶的节点就是待删除节点的前驱节点。这样一来,删除操作就变得十分方便了。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
ListNode dummy = new ListNode(0, head);
Deque<ListNode> stack = new LinkedList<ListNode>();
ListNode cur = dummy;
while (cur != null) {
stack.push(cur);
cur = cur.next;
}
for (int i = 0; i < n; ++i) {
stack.pop();
}
ListNode prev = stack.peek();
prev.next = prev.next.next;
ListNode ans = dummy.next;
return ans;
}
}

复杂度分析

  • 时间复杂度:O(L),其中 L 是链表的长度。

  • 空间复杂度:O(L),其中 L 是链表的长度。主要为栈的开销。

方法三:双指针

思路与算法

我们也可以在不预处理出链表的长度,以及使用常数空间的前提下解决本题。

由于我们需要找到倒数第 n 个节点,因此我们可以使用两个指针 first 和 second 同时对链表进行遍历,并且 first 比 second 超前 n 个节点。当 first 遍历到链表的末尾时,second 就恰好处于倒数第 n 个节点。

具体地,初始时 first 和 second 均指向头节点。我们首先使用 first 对链表进行遍历,遍历的次数为 n。此时,first 和 second 之间间隔了 n−1 个节点,即 first 比 second 超前了 n 个节点。

在这之后,我们同时使用 first 和 second 对链表进行遍历。当 first 遍历到链表的末尾(即 first 为空指针)时,second 恰好指向倒数第 n 个节点。

根据方法一和方法二,如果我们能够得到的是倒数第 n 个节点的前驱节点而不是倒数第 n 个节点的话,删除操作会更加方便。因此我们可以考虑在初始时将 second 指向哑节点,其余的操作步骤不变。这样一来,当 first 遍历到链表的末尾时,second 的下一个节点就是我们需要删除的节点。

p3

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public ListNode removeNthFromEnd(ListNode head, int n) {
ListNode dummy = new ListNode(0, head);
ListNode first = head;
ListNode second = dummy;
for (int i = 0; i < n; ++i) {
first = first.next;
}
while (first != null) {
first = first.next;
second = second.next;
}
second.next = second.next.next;
ListNode ans = dummy.next;
return ans;
}
}

复杂度分析

  • 时间复杂度:O(L),其中 L 是链表的长度。

  • 空间复杂度:O(1)。